A formula for the Kronecker products of Schur functions of hook shapes
نویسندگان
چکیده
منابع مشابه
The Kronecker Product of Schur Functions Indexed by Two-Row Shapes or Hook Shapes
The Kronecker product of two Schur functions sμ and sν , denoted by sμ ∗sν, is the Frobenius characteristic of the tensor product of the irreducible representations of the symmetric group corresponding to the partitions μ and ν. The coefficient of sλ in this product is denoted by γ λ μν , and corresponds to the multiplicity of the irreducible character χ in χχ . We use Sergeev’s Formula for a S...
متن کاملOn the Kronecker Product of Schur Functions of Two Row Shapes
The Kronecker product of two homogeneous symmetric polynomials P1 and P2 is defined by means of the Frobenius map by the formula P1 ⊗ P2 = F (F−1P1)(F−1P2). When P1 and P2 are Schur functions sλ and sμ respectively, then the resulting product sλ ⊗ sμ is the Frobenius characteristic of the tensor product of the irreducible representations of the symmetric group corresponding to the diagrams λ an...
متن کاملinvestigating the feasibility of a proposed model for geometric design of deployable arch structures
deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...
developing a pattern based on speech acts and language functions for developing materials for the course “ the study of islamic texts translation”
هدف پژوهش حاضر ارائه ی الگویی بر اساس کنش گفتار و کارکرد زبان برای تدوین مطالب درس "بررسی آثار ترجمه شده ی اسلامی" می باشد. در الگوی جدید، جهت تدوین مطالب بهتر و جذاب تر، بر خلاف کتاب-های موجود، از مدل های سطوح گفتارِ آستین (1962)، گروه بندی عملکردهای گفتارِ سرل (1976) و کارکرد زبانیِ هالیدی (1978) بهره جسته شده است. برای این منظور، 57 آیه ی شریفه، به صورت تصادفی از بخش-های مختلف قرآن انتخاب گردید...
15 صفحه اولA recursion formula for k-Schur functions
The Bernstein operators allow to build recursively the Schur functions. We present a recursion formula for k-Schur functions at t = 1 based on combinatorial operators that generalize the Bernstein operators. The recursion leads immediately to a combinatorial interpretation for the expansion coefficients of k-Schur functions at t = 1 in terms of homogeneous symmetric functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1989
ISSN: 0021-8693
DOI: 10.1016/0021-8693(89)90191-9